Previous PageTable Of Contents

 

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on automatic control 19, 716–723.

Bryk, A.S. and Raudenbush, S.W. (1992). Hierarchical Linear models. Sage Publications.

Cressie, N.A.C. (1991). Statistics for spatial data. John Wiley & Sons, New York.

Diggle, P.J., Liang, K.Y. and Zeger, S.L. (1994). Analysis of longitudinal data. Oxford Science Publications, Clarendon Press, Oxford.

Duchateau, L. and Janssen, P. (1997). An example-based tour in linear mixed models. In: Linear mixed models in practice. A SAS oriented approach. Verbeke, G. and Molenberghs, G. (Eds.). Springer Verlag, New York, pp. 11–56.

Duchateau, L. (1997). Comparing the mixed model and the fixed effects model: Do the advantages justify the costs? In: Proceedings of the Fifth Scientific Conference of the East, Central and Southern Africa Network of the International Biometric Society, Mombasa, Kenya. Duchateau L. and Mwambi H.G. (Eds.). pp. 39–43.

Edwards, A.W.F. (1972). Likelihood. Cambridge University Press, Cambridge.

Fai, A.H. and Cornelius, P.L. (1996). Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments. Journal of Statistical Computing and Simulation 54, 363–378.

Gianola, D. and Hammond, K. (1990). Advances in statistical methods for genetic improvement of livestock. Springer Verlag, New York.

Giesbrecht, F.G. and Burns, J.C. (1985). Two-stage analysis based on a mixed model: Large-sample asymptotic theory and small-sample simulation results. Biometrics 41, 477–486.

Goldstein, H. (1995). Multilevel statistical models. Second Edition. Edward Arnold.

Haxville, D.A. (1974). Bayesian inference for variance components using only error contrasts. Biometrika 61, 383–385.

Harville, D.A. (1977). Maximum likelihood approaches to variance components estimation and to related problems. Journal of the American Statistical Association 72, 320–340.

Henderson, C.R. (1953). Estimation of variance and covariance components. Biometrics 9, 226–252.

Henderson, C.R. (1990) Statistical methods in animal improvement: historical overview. In: Advances in statistical methods for genetic improvement of livestock. Gianola, D. and Hammond, K. (Eds.). Springer Verlag, New York, pp. 2–14.

Hocking, R.R. (1996). Methods and applications of linear models. Regression and the analysis of variance. John Wiley & Sons, New York.

Kackar, R.N. and Harville, D.A. (1984). Approximations for standard errors of estimators of fixed effects and random effects in mixed linear models. Journal of the American Statistical Association 79, 853–862.

Littell, R.C., Milliken, G.A., Stroup, W.W. and Wolfinger, R.D. (1996). SAS system for mixed models. SAS Institute Inc., Cary, NC, USA.

Longford, N.T. (1993). Random coefficient models. Oxford University Press, Oxford.

McLean, R.A. and Sanders, W.L. (1988). Approximating degrees of freedom for standard errors in mixed linear models. In: Proceedings of the statistical computing section, American Statistical Association, New Orleans, pp. 50–59.

Milliken, G.A. and Johnson, D.E. (1992). Analysis of messy data: Designed experiments Vol 1. Van Nostrand Reinhold.

Mood, A.M., Graybill, F.A. and Boes, D.C. (1974). Introduction to the theory of statistics. Third Edition. McGraw-Hill.

Nelder, J.A. (1954). The interpretation of negative components of variance. Biometrika 41, 544–548.

Neter, J., Wasserman, W. and Kutner, M.H. (1990). Applied linear statistical models. Regression, analysis of variance and experimented designs. Third Edition. Richard D. Irwin, Inc., Homewood, IL.

Patterson, H.D, and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 78, 609–619.

Ripley, B.D. (1981). Spatial statistics. John Wiley & Sons, New York.

Roger, J.H. (1993). A new look at the facilities in PROC MIXED. Proceedings SEUGI 93, 521–532.

SAS Institute Inc. Cary, NC (1996). SAS/STAT Software: Changes and Enhancements through Release 6.11.

Satterthwaite, F.E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin 2, 110–114.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461–464.

Searle, S.R. (1971). Linear Models. John Wiley & Sons, New York.

Searle, S.R. (1982). Matrix algebra useful for statistics. John Wiley & Sons, New York.

Searle, S.R. (1987). Linear models for unbalanced data. John Wiley & Sons, New York.

Searle, S.R., Casella, G. and McCulloch, C.E. (1992). Variance components. John Wiley & Sons, New York.

Thompson, W.A. Jr. (1962). The problem of negative estimates of variance components. Annals of Mathematical Statistics 33, 273–289.

Verbeke,G. and Molenberghs, G. (1997). Linear mixed models in practice. A SAS oriented approach. Springer Verlag, New York.

Westfall, P.H. and Young, S.S. (1993). Resampling-based multiple testing: examples and methods for p-value adjustment. John Wiley & Sons, New York.

Previous PageTop Of Page